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We will make use of the notation and de�nitions as in the book by Revuz andYor [RY]. Especially for the de�nition of Bessel processes, the theory of continu-ous martingales and Girsanov transformations, we will use this book as the basicreference.The authors want to thank Michel �Emery and Marc Yor for helpful discussions.1. Construction of Strictly Positive Strict Local MartingalesLet us �rst introduce some notation. We will use a �ltered probability space(
; (Ft)0�t�1; P ), where the �ltration F is supposed to satisfy the usual assump-tions. This means that F0 contains all null sets of F1 and that the �ltration is rightcontinuous.The continuous martingale M (with respect to P ), de�ned on the interval [0,1]has value 1 at time 0 and is supposed to be P uniformly integrable. Most of thetime we suppose that it has a strictly positive probability to become zero. Thestopping time T is de�ned as T = infft jMt = 0g:If the martingale does not hit zero then T is simply equal to 1. The measure Ris de�ned on F1 as the measure with Radon-Nikodym derivative equal to MT =dR=dP . From the optional stopping time theorem it follows that on Ft the Radon-Nikodym density is simply Mt^T . We remark that if P [MT > 0] < 1, the measureR is only absolutely continuous with respect to P . A local martingale that is nota uniformly integrable martingale will be called a strict local martingale. Thisterminology was introduced by Elworthy, Li and Yor [ELY], where an analysis ofstrict local martingales is given.We shall always denote by N the process de�ned asNt =Mt � Z t0 (1=Mu) dhM;Miu:It follows from Lenglart's extension of the Girsanov formula (see, e.g. Revuz-Yor[RY] p.303 or [L]) that N is an R- local martingale and thatdMt = dNt + 1Mt dhNt; Ntiis the Dob-Meyer decomposition of the semi-martingale M under R.The usual setting in the applications of probability theory to mathematical �-nance is that of a stochastic process S describing the (discounted) price of a stock.A basic problem then is to decide whether there is an equivalent local martingalemeasure for the process S and to investigate the set of all such measures (see, e.g.Delbaen-Schachermayer [DS2] and references given there).The idea of this paper is to turn things upside down. The role of the priceprocess S will be taken by the process M under the measure R.If P and R happen to be equivalent then, of course, the process M (consideredwith respect to R) admits at least one equivalent martingale measure, namely P .The interesting aspect arises if R is only absolutely continuous with respect to P ,2



but not equivalent to P . In this case P fails to be an equivalent martingale measurefor the processM (considered with respect to R), as P is not absolutely continuouswith respect to R. If we can deduce from martingale representation argumentsthat P is the only candidate for a martingale measure, then we may conclude thatthere is no R�equivalent martingale measure. As a consequence we deduce thatM under R does not satisfy the property of No Free Lunch with Vanishing Risk, aconcept introduced in Delbaen-Schachermayer [DS2] and for locally bounded semi-martingales equivalent to the existence of an equivalent local martingale measure.We will show that in the case under consideration, M (seen under R) allows arbi-trage for general admissible integrands. As shown in Delbaen-Schachermayer [DS2]this is strictly stronger than the non-existence of an R�equivalent local martingalemeasure.The reason for proceeding in this way lies in the fact that it is well suited toanalyse Bessel processes and allows to exhibit a general phenomenon occurring inthis setting. Let B = (Bt)0�t be a one-dimensional standard Brownian Motionstarting at B0 = 1 and de�ned on (
; (Gt)0�t; P ). We de�ne T as the �rst instantthe Brownian Motion B hits 0 with the convention that T = 1 if B did not hit 0before time t = 1. The process M is de�ned as M = BT , the Brownian Motionstopped at time T . By (Ft) we denote the natural �ltration generated by M .Clearly M is the P�martingale associated to a P�absolutely continuous measureR on F1 whose density is given by M1 = MT . As the probability that M1 equalszero is strictly positive, R fails to be equivalent to P . Under the measure R thecontinuous martingale N , as de�ned above, is a stopped Brownian Motion sincehN;Nit = hM;Mit = t. The natural �ltration, under the measure R, of the processN is the �ltration Ft augmented with the subsets of fMT = 0g. Under R, theprocess M satis�es the di�erential equationdMt = dNt + 1Mt dt:It is therefore a Bes3 process starting at the point 1.In addition, in the present example we have martingale representation theoremsat hand, which will allow us to carry out the program sketched above.The previous description of the Bes3 process is well known, see for instanceRevuz-Yor [RY] p. 294 and Ex 1.2.2, question 2 p. 419. This description is anexample of a more general procedure known as the construction of the h�process.In Biane-Yor [BY] this construction was used to study properties of the "m�eandrebrownien". In order to keep a more general framework and, in particular, to beable to derive results for Bessel processes of dimension � 6= 3 we place us in themore general framework of an arbitrary P� absolutely continuous probability R onF1 and the associated processes M and N de�ned above.Theorem 1. If R is absolutely continuous with respect to P but not equivalent toP , then the process 1=Mt is a R�strict local martingale.Proof. Under the measure R, the process M is a special semi-martingale that isdecomposed as Mt = Nt + R t0 1=Mu dhM;Miu into its local martingale part and its3



predictable component. Under R, the processM is almost never zero and therefore1=M is also a semi-martingale. Stochastic calculus shows that under R, we haved(1=Mt) = �1=M2t dNtand hence it is a local martingale. Since it is positive it is a supermartingale underR. To see that it is not a martingale, it is su�cient to remark that ER[1=M1] =P [Mt^T > 0] < 1. �Remark. The passage from P to R poses the subsequent technical di�culty: the �l-tration (Ft) does not satisfy the usual assumptions with respect to R. But this prob-lem is not hard to �x: the �ltration (Gt) de�ned as Gt = �(Ft; all subsets of fMT =0g) satis�es the usual assumptions. An easy exercise on monotone classes showsthat for every (Gt)�predictable process H , there is a (Ft)�predictable process Ksuch that f9t j Ht 6= Ktg � fMT = 0g. For later use it is also useful to remarkthat the natural �ltrations of M and N under R are the same.Theorem 2. If the martingale M has the F�predictable representation propertywith respect to P then the R�local martingale N also has the G�predictable repre-sentation property with respect to R. Consequently 1=M also has the G�predictablerepresentation property with respect to R.Proof. See Th 12.22 in Jacod's book,[J]. �Corollary. If M is a local martingale with the F�predictable representation prop-erty under P and if R and P are equivalent, i.e. P [MT = 0] = 0, then 1=M hasthe F�predictable representation property under R.Before we formulate the next theorem we recall the notion of simple integrands,of general admissible integrands and of no-arbitrage. (see Delbaen-Schachermayer[DS2])De�nition. We say that a predictable process H is simple if it is of the formH = n�1Xk=0 fk 1]]Tk;Tk+1]]where 0 � T0 � T1 : : : � Tn � 1 are stopping times and fk are FTk measurablefunctions. A predictable process H that is S�integrable for a semi-martingale Sis called a�admissible (for a 2 IR) if H � S � �a. We say that S satis�es theno-arbitrage property with respect to simple integrands if, for H simple predictableand such that (H � S)1 � 0 almost surely, we have that (H � S)1 = 0. The semi-martingale S satis�es the no-arbitrage property for general admissible integrands ifH admissible and (H �S)1 � 0 a.s. imply (H �S)1 = 0. If the underlying probabilitymeasure P plays a role, we add the phrase "with respect to P".Remark. Simple integrands are not necessarily admissible.We remark that if S allows arbitrage for simple integrands, then the simplepredictable process used to construct the arbitrage can be taken (see Delbaen-Schachermayer [DS1]) of the form H = f 1]]T0;T1]] where T0 � T1 are two stopping4



times and where f is FT0 measurable. When we split f into its positive and itsnegative part, we immediately see that we can either take f = �1 or f = 1.From this it easily follows that a strictly positive process S satis�es the no-arbitrage property for simple integrands if and only if the process 1S satis�es theno-arbitrage property with respect to simple integrands. We warn the reader thatif we look at arbitrage with respect to admissible simple integrands the statementis no longer true. An example will be given below.Theorem 3. If M has the F�predictable representation property for P and ifP [MT = 0] > 0, then the process M seen under R, admits arbitrage for generaladmissible integrands.Proof. Take the real number � so that f = 1fMT>0g � �1fMT�0g satis�es EP [f ] =0. Since P [MT = 0] > 0, such an � exists and we have that � � 0. By therepresentation property there is H predictable such that f = (H �M)1 and H �M ��� almost surely with respect to P . It follows that under the measure R theintegrand H is admissible (the process (H �M) is bounded from below by -�) andproduces an R almost surely positive outcome 1fMT>0g. �Corollary. The Bes3 process in its natural �ltration permits arbitrage.Proof. This follows easily from the theorem and the construction of the Bes3 processgiven above. �Remark. As shown in Delbaen-Schachermayer [DS1] the inverse of the Bes3 processsatis�es the no-arbitrage property with respect to simple, not necessarily admissible,integrands. The Bes3 process therefore also satis�es the property of no-arbitragewith respect to simple integrands.Remark. The problem whether or not M is arbitrage free under R is tricky anddepends on the kind of arbitrage used. Under the measure P , M is a uniformlyintegrable martingale and hence arbitrage free in any reasonable sense and in par-ticular for simple bounded integrands. Under the measure R, the situation changes.The process 1M is a R�local martingale and hence satis�es the no-arbitrage prop-erty with respect to general admissible integrands. Under the measure R, theprocess M however might allow arbitrage opportunities with respect to simple ad-missible integrands. This in turn implies that 1M , a local martingale under R,allows arbitrage with respect to simple, not necessarily admissible, integrands. (seeDelbaen-Schachermayer [DS1] for another example in this direction).The following example is another illustration. On a probability space with aBrownian Motion B, endowed with the natural �ltration, we de�neSt = exp(Z t0 1=p(1� u) dBu � 1=2 Z t0 1=(1� u) du):We stop S when it hits either 2 or 0. Since St tends to 0 almost surely when t tendsto 1, the stopping time is well de�ned and the resulting stopped process is a boundednon-negative martingale. The measure R is de�ned as dR = ST dP . Under R, theprocess S admits arbitrage with respect to simple admissible integrands. IndeedS1 � S0 = 1 under R. The process 1S is a strict R�local martingale. Under R the5



outcome 1S0 � 1S1 is realised by a simple integrand but it is not an outcome of anadmissible integrand.In the general setup of theorem 3, M satis�es the property that for stoppingtimes U � V , f = MV �MU � 0 R a.s. implies f = 0, R a.s.. We can see thisas follows. The relation f � 0 implies that 1MV � 1MU � 0 R a.s. But under R,the process 1=M is a positive local martingale and hence a supermartingale. Wetherefore obtain ER[ 1MV � 1MU ] � 0. This implies that 1MV � 1MU = 0 R a.s. andhence f = 0 R a.s..To analyse the converse situation we suppose that there are two stopping timesU � V such that R a.s. we have MV �MU � 0. By de�nition of R and by theno-arbitrage property of M (under P ) we necessarily have that fMV �MU � 0g �fMT = 0g. This means that when at time U there is still a possibility to losemoney, it is only due to the fact that M can become zero.Theorem 3 as well as the example given above, illustrate what can happen ifwe only look at survivors. In statistics one encounters the phenomenon of survivorbias when dealing e.g. with outperformance of stocks and when investigating thee�cient market hypothesis. If a sample of today's stocks or mutual funds is takenand if the history of the corresponding returns is analysed, the statistician in factonly looks at survivors. The stocks, mutual funds, investment opportunities thatperformed very badly did not survive and the sample su�ers from survivor bias.(see e.g. Ross [R]). The example given is such an illustration. By looking at thetrajectories that survived we were even able to obtain arbitrage with respect tosimple integrands.Theorem 3 shows the general case. Arbitrage with respect to simple integrandsis not always possible (see the case of the Bes3 process) but with respect to generalintegrands, arbitrage is present.2. Converse TheoremsThe preceding situation is more general than it �rst looks. This section is devotedto a converse of theorems 1 and 3. We will show that under certain conditions,a strictly positive strict local martingale has the same distribution as the onesobtained from theorem 1. We will also show that if L is a strictly positive strictlocal martingale that satis�es the predictable representation property, then theconclusion of theorem 3 always holds. When we deal with the distribution of aprocess we mean the image measure on a natural space of trajectories. Because wealso need an extension theorem for measures we need a space that is big enough.The construction is an interpretation of the construction of the F�ollmer measureof a supermartingale.(see F�ollmer [F], Az�ema-Jeulin [AJ] and Meyer [M]). So themethods we use are standard. However in our approach the supermartingale is astrictly positive continuous local martingale and this simpli�es the construction andallows us to use a natural space of trajectories. Referring to Meyer [M] we add anextra (absorbing) point to the state space IR+, i.e. we will work with the compactspace [0;1].The space of trajectories is the space C1[0;1] of continuous paths ! de�ned onthe time interval [0;1] with values in [0;1] and with the extra property that if!(t) =1 then !(s) =1 for all s � t. The set C1 is a Borel set of the space of allcontinuous functions from [0;1] into [0;1] endowed with the topology of uniform6



convergence.The evaluation functionals are denoted Lt, hence Lt(!) = !(t). They take valuesin [0;1]. The �ltration generated by the process (Lt)0�t�1 is denoted by H�t , thesuperscript meaning that we do not saturate this �ltration in order to satisfy theusual conditions. The results of F�ollmer, [F] and especially the presentation inMeyer, [M] can be translated into the following theorem. We only give a sketch ofthe proof.Theorem 4. If R is a measure on C[0;1] such that L is a strictly positive strictlocal martingale, then(i) there is a probability measure on C1[0;1] such that M = 1L is a P martingale.(ii) we may choose P in such a way that the measure R is absolutely continuouswith respect to P and its Radon-Nikodym derivative is given by dR =M1 dP .(iii) if L has the predictable representation property with respect to R thenM hasthe predictable representation property with respect to P . In this case the process1L , seen under the measure R, allows arbitrage with respect to general admissibleintegrands.Proof. The measure R is de�ned on H�1 and is such that the process L is a strictlypositive strict local martingale. The strict positivity of L results in R[L1 = 0] = 0.The stopping times Tn are de�ned as the �rst hit of the level n, Tn = infft j Lt �ng ^ 1. It is easy to see that Tn is a stopping time for the �ltration H�. Alsolimn!1 Tn = T , where T = infft j Lt = 1g ^ 1. The sigma algebras H�Tn areincreasing and their union generates H�T = H�1.The stopped processes LTn are bounded continuous martingales for the measureR. On each of the sigma algebras H�Tn we de�ne the measure Pn as dPn = LTn dR.By the martingale property we have that Pn+1 restricted toH�Tn is precisely Pn. Weobtain in this way an additive set function P de�ned on Sn�1 H�Tn . This additiveset function is sigma additive and can be extended to a true probability measureon H�1. �Theorem 5. Let (
;(Ft)0�t�1;R0) be a probability space with a �ltration that sat-is�es the usual assumptions. Let L0 be a strictly positive, continuous, strict localmartingale. Assume that F is the natural �ltration of L0 and that L0 has the pre-dictable representation property. Under these assumptions, the process 1=L0 allowsarbitrage with respect to general admissible integrands.Proof. We de�ne a mapping �:
 ! C1 as follows �(!)(t) = L0t(!). Since L0 isalmost everywhere continuous the mapping � is well de�ned (if needed we �rstthrow away a set of measure zero). The mapping � is measurable and induces ameasureR onH01. We now apply the theory above and since the �ltrationF satis�esthe usual assumptions we see that for each t the mapping � is measurable for thecouple Ft�HRt . The process L de�ned on C1 is strictly positive, it is a strict localmartingale and has the predictable representation property. (Here we use that Fis the natural �ltration generated by L0). We therefore obtain an HR�predictableprocess H that is admissible and that produces an arbitrage opportunity. Themapping H 0 = H � � is F�predictable, is admissible and produces arbitrage forthe original process 1=L0. The proof is now complete. �7



3. Bessel processesIn this section we will apply the previous theorems to the particular case ofBessel processes of dimension � > 2. (from now on � will denote a real number thatis strictly greater than 2). It is known that if X is a Bessel process of dimension �,starting at X0 = 1, then L = X2�� is a strictly positive strict local martingale (seeRevuz-Yor [RY] p.418 ex 1.16). It is easy to see that the local martingale L has thepredictable representation property with respect to the natural �ltration generatedby X . Also the method of Delbaen-Schachermayer [DS1] for the case � = 3 canbe adapted and this yields that L satis�es the no-arbitrage property with respectto simple integrands. The results of the preceding section therefore immediatelyyields the following:Theorem 6. If � > 2 and X is a Bessel process of dimension �, then L = X2��is a local martingale such that 1L allows arbitrage with respect to general admissibleintegrands. The processes L and 1L do not allow arbitrage with respect to simplepredictable integrands.Although the preceding result is satisfactory for applications in �nance, it wouldbe nice if we could give an interpretation of the martingale M needed to constructL. More precisely we want to make the construction of the preceding section moretransparent. The main ingredient for this is the Girsanov transformation for Besselprocesses. The theory is developed by Yor [Y] and in particular the formula (2.c)there, relates Bessel processes from dimension � > 2 with Bessel processes of (pos-sibly negative) dimension 4� �. An application of these results immediately gives:Theorem 7. If � < 2 and under the measure P , X is a Bes� process starting at 1and stopped at the �rst time T when X hits zero, then under the measure R de�nedas dR = X2��T dP , X is a Bes4�� process.For � = 3 we �nd the following situation. Let M be a Brownian Motion startedat M0 = 1 and stopped at zero (i.e. a Bes1 stopped at zero). The processM underthe measure dR =M1 dP is a Bes3 process. Theorem 5 now shows that M allowsarbitrage for general admissible integrands. This result was the main reason fordeveloping the theory of sections 1 and 2. Again the construction is an example ofan h-process.4. Additional Comments.We gave one way to construct strictly positive strict local martingales X suchthat 1X allows arbitrage opportunities. Financially this means that betting on theexchange rate ECU/$ does not yield arbitrage opportunities for a European citizen,but for an American citizen, there are such possibilities. This is counter-intuitivebut there is an explanation. For simple predictable strategies there are no arbitragepro�ts for both agents. When general admissible integrands are allowed then oneof the agents can make pro�ts. The reason can be found in the restriction that thestrategy has to be admissible. This restriction is not independent of the change ofcurrency. So one agent can use admissible strategies (buying and selling) that haveno equivalent admissible translation (selling and buying) for the other agent.In Delbaen-Schachermayer [DS3] we discuss the arbitrage property when thenum�eraire is changed. The results given there extend the previous results. The8



method however is related to our paper [DS2] and is more involved than the con-struction of strict local martingales given here.We �nally remark that Theorem 5 can be proved directly, i.e. without usingthe projective limit construction. Of course proceeding that way does not indicatehow strict local martingales arise in a natural way. We also remark that the coun-terexample constructed in [S] or [DS4] yields a continuous local martingale L anda uniformly integrable strictly positive martingale Z such that LZ is a uniformlyintegrable martingale. Since Z = (1=L) (LZ) is a martingale, we �nd that 1=Lhas an equivalent martingale measure. This example shows that in theorem 5, thehypothesis that L has the predictable representation property cannot be dropped.References[AJ] J. Az�ema et T. Jeulin, Pr�ecisions sur la mesure de F�ollmer, Ann. Inst. Henri Poincar�eSection B XII (1976), 257{283.[BY] Ph. Biane and M. Yor, Quelques Pr�ecisions sur le M�eandre Brownien, Bull. Sc. Math,2es�erie 112 (1988), 101{109.[DS1] F. Delbaen and W. Schachermayer, Arbitrage and Free Lunch with Bounded Risk forunbounded continuous processes, Mathematical Finance 4 (1994), 343{348.[DS2] F. Delbaen and W. Schachermayer, A General Version of the Fundamental Theorem ofAsset Pricing, Mathematische Annalen 300 (1994), 463{520.[DS3] F. Delbaen and W. Schachermayer, The No-Arbitrage Property under a Change of Nu-m�eraire, to be published in Stochastics and Stochastic Reports.[DS4] F. Delbaen and W. Schachermayer, A simple counter-example to several problems in thetheory of asset pricing, which arises generically in incomplete markets., forthcoming.[ELY] D. Elworthy, X.-M. Li and M. Yor, The Importance of Strict Local Martingales, forthcom-ing.[F] H. F�ollmer, The Exit Measure of a Supermartingale, Zeitschrift f�ur Wahrscheinlichkeits-theorie und verwandte Gebiete 21 (1972), 154{166.[J] J. Jacod, Calcul Stochastique et probl�emes de martingales, Springer Verlag, Berlin, Hei-delberg, New York, 1979.[L] E. Lenglart, Transformation des martingales locales par changement absolument con-tinu de probabilit�es, Zeitschrift f�ur Wahrscheinlichkeitstheorie und verwandte Gebiete 39(1977), 65{70.[M] P. A. Meyer, La mesure de F�ollmer en th�eorie de surmartingales, S�em. de Probabilit�esVI, Lecture Notes in Mathematics 258, Springer, Heidelberg, Berlin, New-York, 1972.[R] S. Ross, Topics in Finance, Talk held during the "6.Tagung Geld, Finanzwirtschaft,Banken und Versicherungen", Karlsruhe, 1993.[RY] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer Verlag,Berlin Heidelberg New York., 1991.[S] W. Schachermayer, A Counterexample to Several Problems in Mathematical Finance,Mathematical Finance.[Y] M. Yor, On some Exponential Functionals of Brownian Motion, Advances in AppliedProbability 24 (1993), 509{531.Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels BelgiumE-mail address: fdelbaen@tena2.vub.ac.beUniversit�at Wien, Br�unnerstrasse 72, A-1210 Wien AustriaE-mail address: wschach@ stat1.bwl.univie.ac.at
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